Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Language
Year range
1.
Yonsei Medical Journal ; : 842-848, 2012.
Article in English | WPRIM | ID: wpr-93569

ABSTRACT

PURPOSE: Pulmonary Kv channels are thought to play a crucial role in the regulation of cell proliferation and apoptosis. Previous studies have shown that fluoxetine upregulated the expression of Kv1.5 and prevented pulmonary arterial hypertension in monocrotaline-induced or hypoxia-induced rats and mice. The current study was designed to test how fluoxetine regulates Kv1.5 channels, subsequently promoting apoptosis in human PASMCs cultured in vitro. MATERIALS AND METHODS: Human PASMCs were incubated with low-serum DMEM, ET-1, and fluoxetine with and without ET-1 separately for 72 h. Then the proliferation, apoptosis, and expression of TRPC1 and Kv1.5 were detected. RESULTS: In the ET-1 induced group, the upregulation of TRPC1 and down regulation of Kv1.5 enhanced proliferation and anti-apoptosis, which was reversed when treated with fluoxetine. The decreased expression of TRPC1 increased the expression of Kv1.5, subsequently inhibiting proliferation while promoting apoptosis. CONCLUSION: The results from the present study suggested that fluoxetine protects against big endothelin-1 induced anti-apoptosis and rescues Kv1.5 channels in human pulmonary arterial smooth muscle cells, potentially by decreasing intracellular concentrations of Ca2+.


Subject(s)
Humans , Apoptosis/drug effects , Blotting, Western , Cell Proliferation/drug effects , Cells, Cultured , Endothelin-1/pharmacology , Flow Cytometry , Fluoxetine/pharmacology , /genetics , Muscle, Smooth, Vascular/cytology , Pulmonary Artery/cytology , Reverse Transcriptase Polymerase Chain Reaction
2.
Experimental & Molecular Medicine ; : 92-97, 2008.
Article in English | WPRIM | ID: wpr-77110

ABSTRACT

Endothelins (ETs), which were originally found to be potent vasoactive transmitters, were known to be implicated in nervous system, but the mode of mechanism remains unclear. ETs (ET-1, ET-2, and ET-3) were added to HN33 (mouse hippocampal neuron chi neuroblastoma) cells. Among the three types of ET, only ET-1 increased the intracellular calcium levels in a PLC dependent manner with the induction of ERK 1/2 activation. As the result of ET-1 exposure, the survival rate of HN33 cells and the PKCalpha translocation into the plasma membrane were increased. We suggest that ET-1 participated in the neuroprotective effect involving the calcium-PKCalpha-ERK1/2 pathway.


Subject(s)
Animals , Mice , Apoptosis/drug effects , Calcium/metabolism , Cell Line , Cell Survival/drug effects , Cytosol/drug effects , Endothelin-1/pharmacology , Endothelin-2/pharmacology , Endothelin-3/pharmacology , Estrenes/pharmacology , Extracellular Signal-Regulated MAP Kinases/metabolism , Immunoblotting , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Neurons/cytology , Neuroprotective Agents/pharmacology , Phosphoproteins/metabolism , Protein Kinase C-alpha/metabolism , Protein Transport/drug effects , Pyrrolidinones/pharmacology , Serum
SELECTION OF CITATIONS
SEARCH DETAIL